Beyond the Void
BYVoid
USACO MAR08 Gold Cow Jogging 牛跑步

这是一个K短路径问题,解决方法有Yen算法等等。但是这并不是一个一般的K短路径问题,这是一个有向无环图。所以可以考虑动态规划(记忆化搜索)的思想解决。

记顶点i到目标点N的k短路径的长度为Dis[i,k]。可以知道每个顶点Dis[i,*],都是由大于i的顶点j,Dis[j,*]推得的。由于源点和目标都是确定的,我们可以从目标节点倒推回源点。

建立原图的逆向图,即从1开始到N。记从顶点1到i的当前路径的长度为S,访问顶点i邻接的顶点j,令新的到j的路径长度F为S+ (i,j)。把F加入到Dis[j]中,并只保留前K小的。然后访问顶点j。如果F大于所有Dis[j],则不能用该路径松弛顶点j,不访问j。当全部访问完以后,按照要求输出Dis[N]即可。

对于维护Dis[i],可以使用堆、甚至平衡树等高级数据结构。但是考虑到K并不是很大,维护一个数组即可。当插入新的元素V时,如果已有的数目不足K,直接插入;如果已经为K,在这K个元素中找到最大值Max,如果V<Max,用V替换Max;如果V>=Max,不必插入。

时间复杂度为O(M*K)

/*
ID: cmykrgb1
PROG: cowjog
LANG: C++
*/
#include <iostream>
#define MAX 1001
#define MAXK 101
#define INF 0x7fffffff

using namespace std;

class list
{
public:
	list *next;
	int p,v;
	list(int tp,int tv)
	{
		p=tp;
		v=tv;
		next=0;
	}
};

class tadjl
{
public:
	list *first,*last;
	tadjl()
	{
		first=last=0;
	}
	void ins(int p,int v)
	{
		if (first)
			last=last->next=new list(p,v);
		else
			first=last=new list(p,v);
	}
};

class monotony
{
public:
	int Size,cnt;
	int C[MAXK];
	monotony(int K)
	{
		Size=K;
		cnt=0;
	}
	bool ins(int v)
	{
		int i,j,max=0;
		if (cnt<Size)
		{
			C[cnt++]=v;
		}
		else
		{
			for (i=0;i<cnt;i++)
			{
				if (C[i]>max)
				{
					max=C[i];
					j=i;
				}
			}
			if (v>=max)
				return false;
			C[j]=v;
		}
		return true;
	}
};

int N,M,K;
tadjl adjl[MAX];
monotony *Dis[MAX];

void init()
{
	int i,a,b,v;
	freopen("cowjog.in","r",stdin);
	freopen("cowjog.out","w",stdout);
	cin >> N >> M >> K;
	for (i=1;i<=M;i++)
	{
		cin >> a >> b >> v;
		adjl[b].ins(a,v);
	}
	for (i=1;i<=N;i++)
	{
		Dis[i]=new monotony(K);
	}
	for (i=0;i<K;i++)
	{
		Dis[N]->C[i]=INF;
	}
}

void dfs(int i,int S)
{
	int j,v,F;
	bool succ;
	list *k;
	for (k=adjl[i].first;k;k=k->next)
	{
		j=k->p;
		v=k->v;
		F=v+S;
		succ=Dis[j]->ins(F);
		if (succ && j!=N)
		{
			dfs(j,F);
		}
	}
}

inline int cmp(const void *a,const void *b)
{
	return *(int *)a-*(int *)b;
}

void print()
{
	int i;
	qsort(Dis[N]->C,K,sizeof(Dis[N]->C[0]),cmp);
	for (i=0;i<K;i++)
	{
		if (Dis[N]->C[i]!=INF)
			cout << Dis[N]->C[i];
		else
			cout << -1;
		cout << endl;
	}
}

int main()
{
	init();
	dfs(1,0);
	print();
	return 0;
}

官方题解

参考翻译

翻译By BYVoid

我们正在考虑的一个无环图,我们希望找到的K ≤ 100最短路径。由于图是环自然有序的顶点,动态规划是一个很好的第一种办法。

假设我们知道顶点i到谷仓顶点N的K短路径,我们可以用来计算从顶点i - 1到N的K短路径。我们认为所有从顶点的i - 1 的出边。假设顶点的i - 1有d个出边,这d个出边的末端顶点都大于的i - 1,我们可以从每个这些顶点计算K短路径。

考虑将要计算的顶点的i - 1至所有这些d * K条路径,顶点i - 1到N的K短路径顶将来自与这些d * K条路径。我们可以通过合并这些d列表中项目,有效地维护一个列表,存储从i-1到N的K短路径。在每一个顶点需要d * K的时间。计算所有的顶点为O(MK)时间。既然M = 10000和K = 100,这将是约1000000个操作。

原文

We are given an acyclic graph and we wish to find the K ≤ 100 shortest paths. Since the graph is acyclic with a natural ordering to the vertices, Dynamic Programming is a good first approach.

Suppose that we knew the K shortest paths starting at each vertex i for i ≥ l and going downhill to the barn at vertex N. Then, to compute the K shortest such paths beginning at vertex i-1, we consider all outgoing edges from vertex i-1. Suppose that vertex i-1 has d outgoing edges. The ends of these d edges are all larger than i-1 and we have computed the K shortest paths from each of these. We can consider prepending vertex i-1 to all of these dK paths. The best K paths starting at vertex i-1 will come from these dK paths. We can efficiently compute a sorted list of the K best paths starting at vertex i-1 by merging these d lists of K items. This requires d*K time at each vertex. Summing over all vertices yields O(MK) time. With M=10,000 and K=100, this will be around 1,000,000 operations, which works. 官方程序

#include <stdio.h>
 
const int BIG = 1000000000;
 
const int MAXN = 2000;
const int MAXE = 20000;
const int MAXK = 200;
 
int n,e,k;
int ea[MAXE];
int eb[MAXE];
int elen[MAXE];
int d[MAXN];
int *out[MAXN];
int *len[MAXN];
int path[MAXN][MAXK];
 
int ei[MAXN];
 
int main() {
 
  FILE *fin;
 
  fin = fopen("cowjog.in", "r");
  fscanf(fin, "%d %d %d", &n, &e, &k);
  for(int i = 0; i < n; ++i){
    d[i] = 0;
  }
  for(int i = 0; i < e; ++i){
    int a,b,l;
    fscanf(fin, "%d %d %d", &b, &a, &l);
    --a; --b;
    ++d[a];
  }
  fclose(fin);
 
  out[0] = &eb[0];
  len[0] = &elen[0];
  for(int i = 1; i < n; ++i){
    out[i] = out[i-1] + d[i-1];
    len[i] = len[i-1] + d[i-1];
  }
 
  fin = fopen("cowjog.in", "r");
  fscanf(fin, "%d %d %d", &n, &e, &k);
  for(int i = 0; i < n; ++i){
    d[i] = 0;
  }
  for(int i = 0; i < e; ++i){
    int a,b,l;
    fscanf(fin, "%d %d %d", &b, &a, &l);
    --a; --b;
    out[a][d[a]] = b;
    len[a][d[a]] = l;
    ++d[a];
  }
  fclose(fin);
 
 
  path[n-1][0] = 0;
  for(int i = 1; i < k; ++i){
    path[n-1][i] = BIG;
  }
 
  for(int i = n-2; i >= 0; --i){
    for(int j = 0; j < d[i]; ++j){
      ei[j] = 0;
    }
    for(int j = 0; j < k; ++j){
      int best_m = 0;
      int best_d = BIG;
      for(int m = 0; m < d[i]; ++m){
	if(len[i][m] + path[out[i][m]][ei[m]] < best_d) {
	  best_m = m;
	  best_d = len[i][m] + path[out[i][m]][ei[m]];
	}
      }
      path[i][j] = best_d;
      ++ei[best_m];
    }
  }
 
  FILE *fout = fopen("cowjog.out", "w");
  for(int i = 0; i < k; ++i){
    fprintf(fout, "%dn", (path[0][i] == BIG) ? -1 : path[0][i]);
  }
  fclose(fout);
 
 
  return(0);
}

上次修改时间 2017-05-22

相关日志